Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions
نویسندگان
چکیده
منابع مشابه
Blow-up of Solutions to a p-Laplace Equation
Consider two perfectly conducting spheres in a homogeneous medium where the current-electric field relation is the power law. Electric field E blows up in the L∞-norm as δ, the distance between the conductors, tends to zero. We give here a concise rigorous justification of the rate of this blow-up in terms of δ. If the current-electric field relation is linear, see similar results obtained earl...
متن کاملBlow-up phenomena for p-Laplacian parabolic problems with Neumann boundary conditions
where p > 2 and is a bounded domain in Rn (n≥ 2) with smooth boundary ∂ . By introducing some appropriate auxiliary functions and technically using maximum principles, we establish conditions to guarantee that the solution blows up in some finite time or remains global. In addition, the upper estimates of blow-up rate and global solution are specified. We also obtain an upper bound of blow-up t...
متن کاملBlow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition
* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...
متن کاملNonlocal Problems with Neumann Boundary Conditions
We introduce a new Neumann problem for the fractional Laplacian arising from a simple probabilistic consideration, and we discuss the basic properties of this model. We can consider both elliptic and parabolic equations in any domain. In addition, we formulate problems with nonhomogeneous Neumann conditions, and also with mixed Dirichlet and Neumann conditions, all of them having a clear probab...
متن کاملRegularization for a Laplace Equation with Nonhomogeneous Neumann Boundary Condition
We consider the following problem uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1) u(0, y) = u(π, y) = 0, y ∈ (0, 1) uy(x, 0) = g(x), 0 < x < π u(x, 0) = φ(x), 0 < x < π The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. Using the new method, we regularize of problem and obtain some new results. Some numerical examples are given to illu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.10.040